Analysis of the compatibility of the message of verbal and non-verbal elements in text messages on the X platform users of different age groups
User posts on social media platforms are a valuable source of marketing information, successfully used by many companies around the world. One of the key pieces of information is the age of the post authors. Entrepreneurs with this information can learn about the interests of individual generational groups and adjust their product offer, distribution channels or marketing activities to a specific audience. On the other hand, public institutions, central and local authorities can get to know the opinions and emotions caused by the decisions, changes or reforms introduced among representatives of various age groups. Authors of content posted on social networks often do not specify their date of birth, which significantly limits the possibility of their use. Linguistic research shows that representatives of different age of groups use different vocabulary and grammatical forms. The are also differentiated by graphic sings commonly used in statements on social networking sites, such as emoticons, emojis, pictograms and others. Graphic signs can only be a simple supplement or emphasize the verbal part, but they can also give it a new meaning. They can also stand alone as a whole statement. The aim of the presented research is to try to assess which type of message, verbal or non-verbal, is more common in Twitter messages and whether both types of message are compatible.
References
Bibliografia/References
Adler, R. B., Rosenfeld, L. B., & Proctor, R. F. (2006). Relacje interpersonalne: Proces porozumiewania się. Dom Wydawniczy Rebis.
Aldenderfer, M. S., & Blashfield, R. K. (1978). Cluster analysis and archaeological classification. Society for American Archaeology, 43(3), 502–505.
Arabie, P., Hubert, L. J., & De Soete, G. (Eds.). (1996). Clustering and Classification. World Scientific.
Archer, D., & Akert R. M. (1977). Words and everything else: Verbal and nonverbal cues in social interpretation, Journal of Personality and Social Psychology, 35, 443–449.
Bagozzi, R. P., & Dholakia, U. M. (2002). Intentional social action in virtual communities. Journal of Interactive Marketing, 16(2), 2–21. https://doi.org/10.1002/dir.10006
Balicki, A. (2009). Statystyczna analiza wielowymiarowa i jej zastosowania społeczno-ekonomiczne. Wydawnictwo Uniwersytetu Gdańskiego.
Biemann, C., & Mehler, A. (Eds). (2015). Text mining. From Ontology Learning to Automated Text Processing Applications. Springer.
Bock, H. H. (1985). On some significance test in cluster analysis. Journal of Classification, 2(1), 77–108.
Deligöz, K. (2003). Virtual Communities and Lifestyles. Cambridge Scholars Publishing.
Dobek-Ostrowska, B. (1999). Podstawy komunikowania społecznego. Wydawnictwo Astrum.
Ekman, P., Friesen, W. V., O'Sullivan, M., & Scherer, K. (1980). Relative importance of face, body, and speech in judgements of personality and affect. Journal of Personality and Social Psychology, 38, 270–277.
Everitt, B. S., Landau, S., & Leese M. (2001a). Cluster Analysis. Arnold.
Everitt, B. S., Landau, S., Leese, M., & Stahl, D. (2011b). Cluster Analysis. John Wiley.
Feldman, R., & Sanger, J. (2007). The text mining handbook. Advanced Approaches in Analyzing Unstructured Data. Cambridge University Press.
Florek, K., Łukaszewicz, J., Perkal, J., Steinhaus, H., & Zubrzycki, S. (1951). Taksonomia wrocławska. Przegląd Antropologiczny, 17, 193–211.
Goban-Klas, T. (2005). Media i komunikowanie masowe. Teorie i analizy prasy, radia, telewizji i Internetu. Wydawnictwo Naukowe PWN.
Gordon, A. D. (1981). Classification: Methods for the Exploratory Analysis of Multivariate Data. Chapman and Hall/CRC.
Gordon, A. D. (1999). Classification. Chapman and Hall/CRC.
Gower, J. C. (1967). A comparison of some methods of cluster analysis. Biometrics, 23(4), 623–638.
Hardy, A. (1996). On the number of clusters. Computational Statistics and Data Analysis, 23(1), 83–96. https://doi.org/10.1016/S0167-9473(96)00022-9
Hartigan, J. A. (1975). Clustering Algorithms. John Wiley.
Hull, D. L. (1970). Contemporary systematic philosophies. Annual Review of Ecology, Evilution, and Systematics, 1, 19–54. https://doi.org/10.1146/annurev.es.01.110170.000315.
Jajuga, K. (1990). Statystyczna teoria rozpoznawania obrazów. Państwowe Wydawnictwo Naukowe.
Kluszczyński, R. W. (1997). Komunikowanie w sztuce interaktywnej. W: S. Krzemień-Ojak (red.), Kultura i sztuka u progu XX wieku. Trans Humana.
Konieczny, M. (2012). Poszukiwanie tożsamości w cyberprzestrzeni. Implikacje pedagogiczne. Vulcan.
Lance, G. N., & Williams, W. T. (1966). A generalized sorting strategy for computer classifications. Nature, 212, 218, https://doi.org/10.1038/212218a0
Lapakko, D. (1997). Three cheers for language: A closer examination of a widely city study of nonverbal communication. Communication Education, 46(1), 63–67. https://doi.org/10.1080/03634529709379073
Lee, Y., Kozar, K., & Larsen, K. (2003). The technology acceptance model: Past, present, and future. Communications of the Association for Information Systems, 12(50), 752–780. https://doi.org/10.17705/1CAIS.01250
MacQueen, J. B. (1967). Some methods for classification and analysis of multivariate observations. W: Proceedings of 5th Berkeley Symposium on Mathematical Statistics and Probability, 1, 281–297.
McQuitty, L. L. (1960). Hierarchical linkage analysis for the isolation of types. Educational and Psychological Measurement, 20(1), 55–67. https://doi.org/10.1177/001316446002000106
McQuitty, L. L. (1966). Similarity analysis by reciprocal pairs for discrete and continuous data. Educational and Psychological Measurement, 26(4), 825–831. https://doi.org/10.1177/001316446602600402
McQuitty, L. L. (1967). Expansion of similarity analysis by reciprocal pairs for discrete and continuous data. Educational and Psychological Measurement, 27(2), 253–255.
Mehrabian, A., & Ferris, S. (1967). Inference of attitudes from nonverbal communication in two channels. Journal of Consulting Psychology, 31(3), 248–252.
Mehrabian, A., & Wiener, M. (1967). Decoding of inconsistent communications. Journal of Personality and Social Psychology, 6(1), 109–114.
Migdał-Najman, K. (2007). Propozycja hybrydowej metody grupowania dużych zbiorów danych wykorzystującej sieć Kohonena i taksonomiczne metody grupowania. Prace Naukowe Akademii Ekonomicznej we Wrocławiu, (1169), Taksonomia, 14 (Klasyfikacja i analiza danych – teoria i zastosowania), 305–313.
Migdał-Najman K., & Najman, K. (2005). Analityczne metody ustalania liczby skupień. Prace Naukowe Akademii Ekonomicznej we Wrocławiu, (1076), Taksonomia, 12 (Klasyfikacja i analiza danych – teoria i zastosowania), 265–273.
Migdał-Najman, K., & Najman, K. (2006). Analityczne metody ustalania skupień w rozmytych zbiorach danych. Prace Naukowe Akademii Ekonomicznej we Wrocławiu, (1126), Taksonomia, 13 (Klasyfikacja i analiza danych – teoria i zastosowania), 159–167.
Migdał-Najman, K., & Najman K. (2008). Wykorzystanie wskaźnika Dunna do ustalania optymalnej liczby skupień. Wiadomości Statystyczne, (11), 26–34.
Migdał-Najman, K., & Najman, K. (2013). Samouczące się sztuczne sieci neuronowe w grupowaniu i klasyfikacji danych. Teoria i zastosowania w ekonomii. Wydawnictwo Uniwersytetu Gdańskiego.
Migdał-Najman, K., Najman, K, Raca, K., & Majkowska (2021). Identification of the words most frequently used by different generations of Twitter users. W: Jajuga K., Najman K., & Walesiak M. (red.), Data Analysis and Classification: Methods and Applications, Studies in Classification, Data Analysis and Knowledge Organization (27–47). Springer. https://doi.org/10.1007/978-3-030-75190-6
Migdał-Najman, K., Najman, K., Raca, K., & Majkowska, A. (2022). Graphic characters as Twitter age group identifiers. W: K. Jajuga, K. Najman, & M. Walesiak (red.), Data Analysis and Classification: Methods and Applications. Studies in Classification, Data Analysis and Knowledge Organization (275–288). Springer.
Milligan, G. W., & Cooper, M. C. (1985). An examination of procedures for determining the number of clusters in a data set. Psychometrika, 50(2), 159–179.
Mirkin, B. G. (1996). Mathematical Classification and Clustering. Kluwer Academic Publishers.
Morreale, S. P., Spitzberg, B. H., & Barge, J. K. (2007). Komunikacja między ludźmi. Motywacja, wiedza i umiejętności (przeł. P. Izdebski, A. Jaworska, & D. Kobylińska). Wydawnictwo Naukowe PWN.
Osatuyi, B. (2013). Information sharing on social media sites. Computers in Human Bahavior, 29(6), 2622–2631. https://psycnet.apa.org/doi/10.1016/j.chb.2013.07.001
Pociecha, J., Podolec, B., Sokołowski, A., & Zając, K. (1988). Metody taksonomiczne w badaniach społeczno-ekonomicznych. Państwowe Wydawnictwo Naukowe.
Porębski, M. (1972). Ikonosfera. PIW.
Rheingold, H. (1994). The Virtual Community: Finding Connection in a Computerized World. Secker & Warburg.
Rheingold, H. (2000). The Virtual Community: Homesteading on the Electronic Frontier. MIT Press.
Rückle, H., & Soróbka, T. (2001). Mowa ciała dla menedżerów. Astrum.
Sneath, P. H. A. (1975). The application of computers to taxonomy. Journal of General Microbiology, 17(1), 201–226.
Sneath, P. H. A., & Sokal, R. R. (1963). Principles of Numerical Taxonomy. W. H. Freeman.
Sneath, P. H. A, & Sokal R. R. (1973). Numerical Taxonomy: The Principles and Practice of Numerical Classification. W. H. Freeman.
Sokal, R. R., & Michener, C. D. (1958). A statistical method for evaluating systematic relationships. Scientific Bulletin. University of Kansas, (38), 1409–1438.
Sokal, R. R., & Rohlf, F. J. (1962). The comparison of dendrograms by objective methods. Taxon, 11(2), 33–40.
Song, M., & Brook Wu, Y. F. (2009). Handbook of Research on Text and Web Mining Technologies. Information Science Reference.
Ward, J. H. (1963). Hierarchical grouping to optimize an objective function. Journal of the American Statistical Association, 58(301), 236–244.
Wilk, E. (2000). n@wigacje słowa. Strategie werbalne w przekazach audiowizualnych. Rabid.