Best prices Special offers for members of the PWE book club The cheapest delivery
DOI: 10.33226/1231-7853.2024.7.5
JEL: D11, D71, M31
Maria Bajak ORCID: bajakm@uek.krakow.pl , e-mail: 0000-0003-4769-7696
Iryna Manczak ORCID: 0000-0002-9661-9945 , e-mail: manczaki|uek.krakow.pl| |manczaki|uek.krakow.pl

Purchase recommendations in terms of bibliometric analysis

The issue of investigating the influence of recommendations on purchasing decisions is part of the current research direction undertaken within various social disciplines. Moreover, it is also an important area discussed in marketing research. The aim of the study is to indicate the links in the literature between the concepts of recommendation and purchase. An attempt is also made to identify the main areas of research in this area and to classify recommendation in terms by type of sender. A bibliometric analysis was carried out to bring order to the literature's considerations to date. The adopted research approach is applicable when there are numerous publications in a selected field. It was decided to identify the links between the terms recommendation and purchase in the scientific literature. For this purpose, the resources of the Scopus and Web of Science databases were used. Based on the results obtained, answers to the research questions were formulated. VOSviewer software was also used, which made it possible to link essential terms from the scientific works and indicate the main research areas in purchase recommendations.

Download article
Keywords: recommendations; purchase; consumers behaviors; social proof; bibliometric analysis; types of recommendations

References

Bibliografia/References

Literatura/Literature

Anantha, N. L., & Bathula, B. P. (2018). Comparative study on traditional recommender systems and deep learning based recommender systems. Advances in Modelling and Analysis B, 61(2), 64–69. https://doi.org/10.18280/ama_b.610202

Al-Adwan, A. S., & Sammour, G. (2021). What makes consumers purchase mobile apps: Evidence from Jordan. Journal of Theoretical and Applied Electronic Commerce Research, 16(3), 562–583. https://doi.org/10.3390/jtaer16030034

Allen, M. W., & Spialek, M. L. (2018). Young millennials, environmental orientation, food company sustainability, and green word-of-mouth recommendations. Journal of Food Products Marketing, 24(7), 803–829. https://doi.org/10.1080/10454446.2017.1415827

Anghelcev, G. (2015). Unintended effects of incentivizing consumers to recommend a favorite brand. Journal of Marketing Communications, 21(3), 210–223. https://doi.org/10.1080/13527266.2012.747980

Ariannezhad, M., Jullien, S., Nauts, P., Fang, M., Schelter, S., & de Rijke, M. (2021). Understanding multi-channel customer behavior in retail. 30th ACM International Conference on Information and Knowledge Management, CIKM, 173355, 2867–2871. https://doi.org/10.1145/3459637.3482208

Ashraf, A., Hameed, I., & Saeed, S. A. (2023). How do social media influencers inspire consumers' purchase decisions? The mediating role of parasocial relationships. International Journal of Consumer Studies, 47(4), 1416–1433. https://doi.org/10.1111/ijcs.12917

Bajak, M., & Spendel, Ł. (2022). Building consumer engagement and loyalty while traversing the customer journey in the online space. Scientific Papers of Silesian University of Technology – Organization and Management Series, 160, 39–52. https://doi.org/10.29119/1641-3466.2022.160.3

Bączkiewicz, A., Kizielewicz, B., Shekhovtsov, A., Wątróbski, J., Więckowski, J., & Salabun, W. (2021). Towards an e-commerce recommendation system based on MCDM methods. 2021 International Conference on Decision Aid Sciences and Application (DASA), 991–996. https://doi.org/10.1109/DASA53625.2021.9682356

Baharuddin, N. A., & Yaacob, M. (2020). Dimensions of eWOM credibility on the online purchasing activities among consumers through social media. Journal Komunikasi: Malaysian Journal of Communication, 36(3), 335–352. https://doi.org/10.17576/JKMJC-2020-3603-21

Bandyopadhyay, S., & Thakur, S. S. (2020). Product prediction and recommendation in e-commerce using collaborative filtering and artificial neural networks: A hybrid approach. W: J. Mandal, & D. Sinha (red.), Intelligent Computing Paradigm: Recent Trends (59–67). Springer. https://doi.org/10.1007/978-981-13-7334-3_5

Belanche, D., Casaló, L. V., Flavián, M., & Ibánez-Sánchez, S. (2021). Understanding influencer marketing: The role of congruence between influencers, products and consumers. Journal of Business Research, 132, 186–195. https://doi.org/10.1016/j.jbusres.2021.03.067

Bhattacharyya, S., & Bose, I. (2020). S-commerce: Influence of Facebook likes on purchases and recommendations on a linked e-commerce site. Decision Support Systems, 138, 113383. https://doi.org/10.1016/j.dss.2020.113383

Burke, R. (2002). Hybrid recommender systems: Survey and experiments. The Journal of Personalization Research, 12(4), 331–370. https://doi.org/10.1023/A:1021240730564

Chandra, S., & Verma, S. (2023). Personalized recommendation during customer shopping journey. W: L. W. Cheng (red.), The Palgrave Handbook of Interactive Marketing (729–752). Springer.

Chatterjee, S. (2018). Explaining customer ratings and recommendations by combining qualitative and quantitative user generated contents. Decision Support Systems, 119, 14–22. https://doi.org/10.1016/j.dss.2019.02.008

Chen, A. H., Zhang, Y. N., Liu, Y. T., & Lu, Y. B. (2023). Be a good speaker in livestream shopping: A speech act theory perspective. Electronic Commerce Research and Applications, 61, 101301. https://doi.org/10.1016/j.elerap.2023.101301

Cheng, L. C., & Chen, K. (2022). Mining longitudinal user sessions with deep learning to extend the boundary of consumer priming. Decision Support Systems, 162(C), 113864. https://doi.org/10.1016/j.dss.2022.113864

Cialdini, R. B. (2021). Wywieranie wpływu na ludzi. Teoria i praktyka. GWP.

Crisci, R., & Kassinove, H. (1973). Effect of perceived expertise, strength of advice, and environmental setting on parental compliance. Journal of Social Psychology, 89(2), 245–250. https://doi.org/10.1080/00224545.1973.9922597

Degutis, M., Urbonavièius, S., Hollebeek, L. D., & Anselmsson, J. (2023). Consumers' willingness to disclose their personal data in e-commerce: A reciprocity-based social exchange perspective. Journal of Retailing and Consumer Services, 74, 103385. https://doi.org/10.1016/j.jretconser.2023.103385

Deng, W. (2022). Leveraging consumer behaviors for product recommendation: An approach based on heterogeneous network. Electronic Commerce  Research, 22, 1079–1105. https://doi.org/10.1007/s10660-020-09441-0

Ding, J., Yu, G., Li, Y., He, X., & Jin, D. (2020). Improving implicit recommender systems with auxiliary data. ACM Transactions on Information Systems, 38(1), 11. https://doi.org/10.1145/3372338

Dunbar, R. E., & Fisher, E. D. (1931). A study of the type and number of balances essential for High-School use. Journal of Chemical Education, 8(5), 936–938. https://doi.org/10.1021/ed008p936

Ejdys, J. (2016). Problematyka społecznej odpowiedzialności biznesu jako obiekt naukowych zainteresowań – wyniki analizy bibliometrycznej. Przegląd Organizacji, (4), 36–44.

Erkan, I., & Evans, C. (2018). Social media or shopping websites? The influence of eWOM on consumers' online purchase intentions. Journal of Marketing Communications, 24(6), 617–632. https://doi.org/10.1080/13527266.2016.1184706

Floh, A., Koller, M., & Zauner, A. (2009). The impact of perceived valence, perceived information credibility and valence intensity of online reviews on purchase intentions. In Department of Decision Sciences and Managerial Economics. W: Proceedings of the Ninth International Conference on Electronic Business (ICEB 2009). Ubiquitous e-Services in Digital Society (257–264). The Chinese University of Hong Kong.

Gerlich, M. (2023). The power of personal connections in micro-influencer marketing: A study on consumer behaviour and the impact of micro-influencers. Transnational Marketing Journal, 11(1), 131–152. https://doi.org/10.58262/tmj.v11i1.1010

Gomes, M. A., Marques, S., & Dias, Á. (2022). The impact of digital influencers' characteristics on purchase intention of fashion products. Journal of Global Fashion Marketing, 13(3), 187–204. https://doi.org/10.1080/20932685.2022.2039263

Gregor, B., & Kaczorowska-Spychalska, D. (2016). Blogi w procesie komunikacji marketingowej. Wydawnictwo Uniwersytetu Łódzkiego.

Geuens, S., Coussement, K., & De Bock, K. W. (2018). A framework for configuring collaborative filtering-based recommendations derived from purchase data. European Journal of Operational Research, 265(1), 208–218. https://doi.org/10.1016/j.ejor.2017.07.005

Grace P. I., & Ting, M. (2018). Antecedents of consumer attitude towards blogger recommendations and its impact on purchase intention. Asian Journal of Business and Accounting, 11(1), 293 – 324. https://doi.org/10.22452/ajba.vol11no1.10

Guo, M., Liao, X., Liu, J., & Zhang, Q. (2020). Consumer preference analysis: A data-driven multiple criteria approach integrating online information. Omega-international Journal of Management Science, 96, 102074. https://doi.org/10.1016/j.omega.2019.05.010

Guo, F., Zhang, X., Ding, Y., & Wang, X. (2016). Recommendation influence: Differential neural responses of consumers during shopping online. Journal of Neuroscience, Psychology, and Economics, 9(1), 29–37. https://doi.org/10.1037/npe0000051

Hajduk, G. (2018). Wyzwania integracji komunikacji marketingowej w kontekście zjawiska outsourcingu i wirtualizacji marketingu. Studia Oeconomica Posnaniensia, 6(5), 33–44.

Ho, S. Y., & Lim, K. H. (2018). Nudging moods to induce unplanned purchases in imperfect mobile personalization contexts. MIS Quarterly, 42(3), 757–778. https://doi.org/10.25300/MISQ/2018/14083

Hostler, R. E., Yoon, V. Y., Guo, Z., Guimaraes, T., & Forgionne, G. (2011). Assessing the impact of recommendation agents on on-line consumer unplanned purchase behavior. Information & Management, 48(8), 336–343.

Hu, J., Bin Sidek, S., Rahman, A. A., Raja Nerina Raja, Y., & Chen, Y. (2023). The influence of internet celebrities on consumers' purchase intention and its educational significance. Educational Administration: Theory and Practice, 29(2), 15–32. https://doi.org/10.17762/kuey.v29i2.500

Hyeongwoo, K., Wonje, Y, Weonyoung, J., Ju-Hyun, K., Kyoung-Kuk, K., Il-Chul, M., & Woo, C. K. (2022). Constructing a personalized recommender system for life insurance products with machine-learning techniques. Intelligent Systems in Accounting, Finance and Management, 29(4), 242–253. https://doi.org/10.1002/isaf.1523

Jiang, Y., Shang, J., Liu, Y., & May, J. (2015). Redesigning promotion strategy for e-commerce competitiveness through pricing and recommendation. International Journal of Production Economics, 167, 257–270. https://doi.org/10.1016/j.ijpe.2015.02.028

Kádeková, Z., & Holienèinová, M. (2018). Influencer marketing as a modern phenomenon creating a new frontier of virtual opportunities. Communication Today, 9(2), 90–104.

Kato, T. (2019). Loyalty management in durable consumer goods: trends in the influence of recommendation intention on repurchase intention by time after purchase. Journal of Marketing Analytics, 7(2), 76–83. https://doi.org/10.1057/s41270-019-00050-x

Kawaguchi, K., Uetake, K., & Watanabe, Y. (2021). Designing context-based marketing: product recommendations under time pressure. Management Science, 67(9), 5642–5659. https://doi.org/10.1287/mnsc.2020.3783

Khodabandehlou, S., Golpayegani, H. S. A., & Rahman, Z. M. (2021). An effective recommender system based on personality traits, demographics and behavior of customers in time context. Data Technologies and Applications, 55(1), 149–174. https://doi.org/10.1108/DTA-04-2020-0094

Krzepicka, A. (2016). Współczesny konsument – konsument digitalny. Studia Ekonomiczne. Zeszyty Naukowe Uniwersytetu Ekonomicznego w Katowicach, (255), 207–214.

Kumar, A., & Shirish, A. (2023). Deconstructing the role of consumer engagement within social media. W: J. Santos, I. Pereira, & P. Pires (red.), Management and Marketing for Improved Retail Competitiveness and Performance (320–340). IGI Global.

Lashkari, S., & Sharma, S. (2023). Recommender Systems and Artificial Intelligence in Digital Marketing. 2022 OPJU International Technology Conference on Emerging Technologies for Sustainable Development (OTCON), 1–8, https://doi.org/10.1109/OTCON56053.2023.10113923

Leskovec, J. Adamic, L. A., Huberman, B. A. (2007). The dynamics of viral marketing. ACM Transactions on the Web, 1(1), 5. https://doi.org/10.1145/1232722.1232727

Li, X., Grahl, J., & Hinz, O. (2022). How do recommender systems lead to consumer purchases? A causal mediation analysis of a field experiment. Information Systems Research, 33(2), 620–637. https://doi.org/10.1287/isre.2021.1074

Liao, S., & Chang, H. (2016). A rough set-based association rule approach for a recommendation system for online consumers. Information Processing & Management, 52(6), 1142–1160. https://doi.org/10.1016/j.ipm.2016.05.003

Liao, S., Widowati, R., & Hsieh, Y. (2021). Investigating online social media users' behaviors for social commerce recommendations. Technology in Society, 66, 101655. https://doi.org/10.1016/j.techsoc.2021.101655

Loukili, M., Messaoudi, F., & Ghazi, M. E. (2023). Personalizing product recommendations using collaborative filtering in online retail: A machine learning approach. International Conference on Information Technology (ICIT), 19–24. https://doi.org/10.1109/ICIT58056.2023.10226042

Lu, L.-C., Chang, W.-P., & Chang, H.-H. (2014). Consumer attitudes toward blogger's sponsored recommendations and purchase intention: The effect of sponsorship type, product type, and brand awareness. Computers in Human Behavior, 34, 258–266. https://doi.org/10.1016/j.chb.2014.02.007

Malina, A., Suwalska-Barancewicz, D., & Dąbrowska, A. (2022). Znaczenie autorytetu i społecznego dowodu słuszności w kształtowaniu postaw wobec stosowania zapłodnienia in vitro. Polskie Forum Psychologiczne, 27(3), 332–350. https://doi.org/10.34767/PFP.2022.03.05

Mas'Od, A., Idris, U. N., Sulaiman, Z., & Chin, T. A. (2019). The influence of Facebook features and activities on consumers' purchase intention. 6th International Conference on Research and Innovation in Information Systems (ICRIIS 2019), 1–6. https://doi.org/10.1109/ICRIIS48246.2019.9073639

Mazurek, G. (2013). Wirtualizacja marketingu – konceptualizacja. W: L. W. Zacher (red.), Wirtualizacja. Problemy, wyzwania, skutki. Poltext.

Merchant, N. (2012). 11 Rules for Creating Value in the Social Era. Harvard Business Press.

Miązek, A. (2023). Ryzyko strategiczne: wyniki analizy bibliometrycznej i kierunki przyszłych badań. W: B. Stępień (red.), Systematyczny przegląd literatury w naukach ekonomicznych. Metodyka, przykłady. Wydawnictwo Uniwersytetu Ekonomicznego w Poznaniu.

Mudambi, S. M., & Schuff, D. (2010). Research note: What makes a helpful online review? A study of customer reviews on Amazon.com. MIS Quarterly, 34(1), 185–200. https://doi.org/10.2307/20721420

Olczyk, M. (2016). Analiza bibliometryczna badań nad konkurencyjnością międzynarodową. Studia Ekonomiczne. Uniwersytet Ekonomiczny w Katowicach, (271), 126–137.

Orús, C., Gurrea, R., & Ibánez-Sánchez, S. (2019). The impact of consumers' positive online recommendations on the omnichannel webrooming experience. Spanish Journal of Marketing, 23(3), 397–413. https://doi.org/10.1108/SJME-08-2019-0067

Pan, X., Hou, L., & Liu, K. (2022). The effect of product distance on the eWOM in recommendation network. Electronic Commerce Research, 22(3), 901–924. https://doi.org/10.1007/s10660-020-09432-1

Protasiewicz, J. (2023). Knowledge recommendation systems with machine intelligence algorithms: People and innovations. Springer Nature.

Prusa, P., & Sadilek, T. (2019). Green consumer behavior: The case of Czech consumers of generation Y, Social Marketing Quaterly, 25(4), 243–255. https://doi.org/10.1177/1524500419881783

Roethke, K., Klumpe, J., Adam, M., & Benlian, A. (2023). Social influence tactics in e-commerce onboarding: The role of social proof and reciprocity in affecting user registrations. Decision Support System, 131, 113268. https://doi.org/10.1016/j.dss.2020.113268

Rutsaert, P., Regan, Á., Pieniak, Z., McConnon, Á., Moss, A., Wall, P., & Verbeke, W. (2013). The use of social media in food risk and benefit communication. Trends in Food Science & Technology, 30, 84–91. https://doi.org/10.1016/j.tifs.2012.10.00

Sanak-Kosmowska, K. (2021). Evaluating Social Media Marketing: Social Proof and Online Buyer Behaviour. Routledge.

Saroja M. N., Kannan S., & Baskaran K. R. (2022). Analysing the purchase behavior of a customer for improving the sales of a product. International Journal of Recent Technology and Engineering, 7(4), 173–175.

Schaeffer, S. E., Garza, S. E., Espinosa, J. C., Urbina, S. C., Nurmi, P., & Cruz-Reyes, L. (2018). A framework for informing consumers on the ecological impact of products at point of sale. Behaviour & Information Technology, 37(6), 607–621, https://doi.org/10.1080/0144929X.2018.1470254

Sicilia, M., Palazón, M., & López, M. (2020). Intentional vs. unintentional influences of social media friends. Electronic Commerce Research and Applications, 42, 100979. https://doi.org/10.1016/j.elerap.2020.100979

Song, T., Yi, C., & Huang, J. (2014). Do We Follow Friends or Acquaintances? The Effects of Social Recommendations at Different Shopping Stages. W: F. F.-H. Nah, (red.), HCI in Business. First International Conference. HCIB 2014, HCI International 2014, Heraklion, Crete, Greece, June 22–27, 2014, Proceedings. Springer. https://doi.org/10.1007/978-3-319-07293-7_74

Qin, B., & Song, G. (2022). Internal motivations, external contexts, and sustainable consumption behavior in China-Based on the TPB-ABC integration model. Sustainability, 14(13), 7677. https://doi.org/10.3390/su14137677

Taher, A., Stuart, E. W. Hegazy, I. (2012). The pharmacist's role in the Egyptian pharmaceutical market. International Journal of Pharmaceutical and Healthcare Marketing, 6(2), 140–155. https://doi.org/10.1108/17506121211243068

Tang, K., Huang, T., He, Z., & Huang, C. (2021). Research on multi-product artificial intelligence recommendation. 2021 IEEE International Conference on Computer Science, Electronic Information Engineering and Intelligent Control Technology (CEI), 1–5. https://doi.org/10.1109/CEI52496.2021.9574471

Tavukçuoglu, R. T. (2018). Word-of-Mouth Marketing. W: S. Ozturkcan, & E. Y. Okan (red.), Marketing Management in Turkey (Marketing in Emerging Markets (321–349). Emerald Publishing. https://doi.org/10.1108/978-1-78714-557-320181022

Theus, N. (2016). Information literacy – analiza bibliometryczna, Bibliotekarz, (6), 4–8.

Walek, B., & Fajmon, P. (2023). A hybrid recommender system for an online store using a fuzzy expert system. Expert Systems with Applications, 212, 118565. https://doi.org/10.1016/j.eswa.2022.118565

Wang, S., Esperança, P. J., & Wu, Q. (2023). Effects of Live streaming proneness, engagement and intelligent recommendation on users' purchase intention in short video community: Take TikTok (DouYin) online courses as an example. International Journal of Human-Computer Interaction, 39(15), 3071–3083. https://doi.org/10.1080/10447318.2022.2091653

Weidig, J., & Kuehnl, C. (2023). Improving the effectiveness of personalized recommendations through attributional cues. Psychology & Marketing, 40, 2559–2575. https://doi.org/10.1002/mar.21914

Wirtz, E. M., & Miller, K. E. (1977). Effect of post-purchase communication on consumer satisfaction and on consumer recommendation of retailer. Journal of Retailing, 53(2), 39–46. https://doi.org/10.1108/APJML-04-2017-0071

Yang, T., Yan, F., & Men, Y. (2023). Recommendation content matters! Exploring the impact of the recommendation content on consumer decisions from the means-end chain perspective. International Journal of Information Management, 88, 102589, https://doi.org/10.1016/j.ijinfomgt.2022.102589

Yang, X., Yang, Y., Su, J. T., Sun, Y. F., Fan, S., Wang, Z. Y., Zhang, J., & Chen, J. M. (2023). Who's next: Rising star prediction via diffusion of user interest in social networks. IEEE Transactions on Knowledge and Data Engineering, 35(5), 5413–5425. https://doi.org/10.1109/TKDE.2022.3151835

Zhang, S., Tang, G., Li, X., & Ren, A. (2023). The effects of appearance personification of service robots on customer decision-making in the product recommendation context. Industrial Management & Data Systems, 123(2), 578–595. https://doi.org/10.1108/IMDS-11-2021-0662

Zhang, Y., Zhou, H., & Qin, J. (2022). Research on the effect of uncertain rewards on impulsive purchase intention of blind box products. Frontiers in Behavioral Neuroscience, 16, 946337. https://doi.org/10.3389/fnbeh.2022.946337

 

Strony internetowe/Web sites

https://www.mdpi.com/about#More_Information_about_MDPI (pobrano 4.09.2023).

https://www.springer.com/gp/computer-science/lncs (pobrano 4.09.2023).

https://www.sciencedirect.com/journal/journal-of-business-research (pobrano 4.09.2023).

https://www.sciencedirect.com/journal/computers-in-human-behavior (pobrano 4.09.2023).

https://www.sciencedirect.com/journal/journal-of-retailing-and-consumer-services (pobrano 4.09.2023).

Article price
5.00
Journal of Marketing and Market Studies 074/2024
17.00
Subscription
227.00 €
182.00
Lowest price in last 30 days: 180.00
get subscription