Best prices Special offers for members of the PWE book club The cheapest delivery

Possibilities of using selected types of biomass for energy purposes

In this study a possibility of using four types of biomass as a fuel in a domestic heating boiler has been investigated. Pine and spruce sawdust, sunflower husk and corn straw were analyzed. Analyzed materials were pelletized. Selected physicochemical properties as well as the elemental composition of the obtained pellets was determined. An economic analysis was also carried out. The experimental results show that the analyzed types of biomass, due to their competitive price, high calorific value and appropriate elemental composition, can be successfully used as fuel in domestic heating boilers.

Download article
Keywords: biomass; pellet; domestic boiler; renewable fuel

References

Bibliografia

Agencja Rynku Energii (2009). Prognoza zapotrzebowania na paliwa i energię do 2030 roku. Warszawa: Agencja Rynku Energii.

Bala-Litwiniak, A., Radomiak, H. (2019). Possibility of the Utilization of Waste Glycerol as an Addition to Wood Pellets. Waste and Biomass Valorization, 10(8), 2193–2199. https://doi.org/10.1007/s12649-018-0260-7.

Bilandzija, N., Jurisic, V., Voca, N., Leto, J., Matin, A., Sito, S., Kricka, T. (2017). Combustion properties of Miscanthus x giganteus biomass — Optimization of harvest time. Journal of the Energy Institute, 90(4), 528–533. https://doi.org/10.1016/j.joei.2016.05.009.

Bridgeman, T. G., Jones, J. M., Shield, I., Williams, P. T. (2008). Torrefaction of reed canary grass, wheat straw and willow to enhance solid fuel qualities and combustion properties. Fuel, 87(6), 844–856. https://doi.org/10.1016/j.fuel.2007.05.041.

Cherubini, F., Peters, G. P., Berntsen, T., Stromman, A H., Hertwich, E. (2011). CO2 emissions from biomass combustion for bioenergy: Atmospheric decay and contribution to global warming. GCB Bioenergy, 3(5), 413–426. https://doi.org/10.1111/j.1757-1707.2011.01102.x.

Demirbas, A. (2005). Potential applications of renewable energy sources, biomass combustion problems in boiler power systems and combustion related environmental issues. Progress in Energy and Combustion Science, 31(2), 171–192. https://doi.org/10.1016/j.pecs.2005.02.002.

European Biofuels Technology Platform Strategic Research Agenda & Strategy Deployment Document. (2008).

Grudziński, Z. (2013). Koszty środowiskowe wynikające z użytkowania węgla kamiennego w energetyce zawodowej. Rocznik Ochrona Srodowiska, 15(1), 2249–2266.

Klugmann-Radziemska, E. (2011). Możliwości szerokiego wykorzystania biopaliw w transporcie drogowym na terenie miasta Gdańska. Gdańsk.

Lewandowski, I., Clifton-Brown, J. C., Scurlock, J. M. O., Huisman, W. (2000). Miscanthus: European experience with a novel energy crop. Biomass and Bioenergy, 19(4), 209–227. https://doi.org/10.1016/S0961-9534(00)00032-5.

McKendry, P. (2002). Energy production from biomass (part 1): overview of biomass. Bioresource Technology, (83), 37–46. https://doi.org/Doi:10.1016/s0960-8524(01)00118-3.

Obaidullah, M., Bram, S., Verma, V., De Ruyck, J. (2012). A review on particle emissions from small scale biomass combustion. International Journal of Renewable Energy Research, 2(1), 147–159.

Pomykała, R., Łyko, P. (2013). Biogaz z odpadów (bio) paliwem dla transportu — bariery i perspektywy. Chemik, 67(5), 454–461.

Rabaçal, M., Fernandes, U., Costa, M. (2013). Combustion and emission characteristics of a domestic boiler fired with pellets of pine, industrial wood wastes and peach stones. Renewable Energy, (51), 220–226. https://doi.org/10.1016/j.renene.2012.09.020.

Radomiak, H., Bala-Litwiniak, A., Zajemska, M., Musiał, D. (2017). Numerical prediction of the chemical composition of gas products at biomass combustion and co-combustion in a domestic boiler. Energy and Fuels 2016, (14), 1–8. https://doi.org/ 10.1051/e3sconf/20171402043.

Rosenqvist, H., Roos, A., Ling, E., Hektor, B. (2000). Willow growers in Sweden. Biomass and Bioenergy, 18(2), 137–145. https://doi.org/10.1016/S0961-9534(99)00081-1.

Roy, M. M., Corscadden, K. W. (2012). An experimental study of combustion and emissions of biomass briquettes in a domestic wood stove. Applied Energy, (99), 206–212. https://doi.org/10.1016/j.apenergy.2012.05.003.

Sami, M., Annamalai, K., Wooldridge, M. (2001). Co-firing of coal and biomass fuel blends. Progress in Energy and Combustion Science, 27 (2), 171–214. https://doi.org/10.1016/S0360-1285(00)00020-4.

Szczukowski, S., Budny, J. (2003). Wierzba krzewiasta — roślina energetyczna. https://www.bip.wfosigw.olsztyn.pl/res/serwisy/bip-wfos-igwolsztyn/komunikaty/_016_003_001_64954.pdf (19.11.2019).

Theis, M., Skrifvars, B. -J., Zevenhoven, M., Hupa, M., Tran, H. (2006). Fouling tendency of ash resulting from burning mixtures of bio fuels. Part 2: Deposit chemistry. Fuel, 85(14–15), 1992–2001. https://doi.org/10.1016/j.fuel. 2006.03.015.

Vassilev, S. V., Baxter, D., Andersen, L. K., Vassileva, C. G. (2010). An overview of the chemical composition of biomass. Fuel, 89(5), 913–933. https://doi.org/10.1016/j.fuel.2009.10.022.

Williams, C. L., Westover, T. L., Emerson, R. M., Tumuluru, J. S., Li, C. (2016). Sources of Biomass Feedstock Variability and the Potential Impact on Biofuels Production. Bioenergy Research, 9(1), 1–14. https://doi.org/10.1007/s12155-015-9694-y.

Wisz, J., Mawiejew, A. (2010). Biomasa — badania w laboratorium w aspekcie przydatności do energetycznego spalania. https://www.cire.pl/pokaz-pdf-%252Fpliki%252F2%252Fbiomasa_badania.pdf.

Zamorano, M., Popov, V., Rodríguez, M. L., García-Maraver, A. (2011). A comparative study of quality properties of pelletized agricultural and forestry lopping residues. Renewable Energy, 36(11), 3133–3140. https://doi.org/10.1016/j.renene.2011.03.020.

Price of the magazine number
14.00
Subscription
112.00 €
89.00
Lowest price in last 30 days: 89.00
get subscription