Najlepsze ceny Specjalne oferty dla członków klubu książki PWE Najtańsza dostawa
DOI: 10.33226/1231-2037.2022.11.2
JEL: F5, F6, L1

Zakłócenia incydentalne w łańcuchu dostaw — analiza ripple effect w świetle badań literaturowych

Zakłócenia incydentalne, szczególnie takie, które wcześniej nie występowały, a ich prawdopodobieństwo w kontekście negatywnego wpływu było niewielkie, od kilku lat stanowią rzeczywistość gospodarczą. Konsekwencje zakłóceń oddziałują na funkcjonowanie podmiotów zlokalizowanych w najodleglejszych częściach globu, a zmieniające się źródła niepewności wymagają podejmowania działań, które pozwolą na budowę bardziej odpornych systemów. Zidentyfikowany ripple effect, definiowany jako nieprzewidywalne skalowanie jednoczesnego rozprzestrzeniania się zakłóceń w łańcuchach dostaw poprzez jego wiele szczebli, coraz częściej stanowi skutek występujących globalnych zagrożeń. W artykule zaprezentowano analizę bibliometryczną dotyczącą zagadnień związanych z łańcuchem dostaw, najczęściej identyfikowanych w ostatnich latach kryzysów i ich konsekwencji w postaci ripple effect. Celem analizy było wskazanie, jak zmienia się zainteresowanie tematyką ripple effect w ostatnich latach w kontekście analizy łańcucha dostaw, co uwidacznia rosnąca liczba publikacji naukowych, autorów, poszerzony obszar oraz zakres analiz badawczych. Wykorzystanie ripple effect w badaniach nad łańcuchem dostaw jest stosunkowo nowym zjawiskiem, a prezentacja danych ilościowych jest nowym spojrzeniem na badaną tematykę, która jest trudna do zbadania innymi metodami.

Pobierz artykul
Słowa kluczowe: ripple effect; łańcuch dostaw; zdarzenia incydentalne; kryzysy; analiza bibliometryczna; Web of Science

Bibliografia

Bibliografia/References

Anugerah, A. R., Muttaqin, P. S., & Trinarningsih, W. (2022). Social network analysis in business and management research: A bibliometric analysis of the research trend and performance from 2001 to 2020. Heliyon, e09270.

Broadus, R. N. (1987). Toward a definition of „bibliometrics”. Scientometrics, 12(5).

Cancino, C. A., Amirbagheri, K., Merigó, J. M., & Dessouky, Y. (2019). A bibliometric analysis of supply chain analytical techniques. Computers & Industrial Engineering, 137, 106015, https://doi.org/10.1016/j.cie.2019.106015

Cancino, C., Merigó, J. M., Coronado, F., Dessouky, Y., & Dessouky, M. (2017). Forty years of Computers & Industrial Engineering: A bibliometric analysis. Computers & Industrial Engineering, 113, 614–629, https://doi.org/10.1016/j.cie.2017.08.033

Caputo, A., Pizzi, S., Pellegrini, M. M., & Dabić, M. (2021). Digitalization and business models: Where are we going? A science map of the field. Journal of Business Research, 123, 489–501, https://doi.org/10.1016/j.jbusres.2020.09.053

Cobo, M. J., Martínez, M. Á., Gutiérrez-Salcedo, M., Fujita, H., & Herrera-Viedma, E. (2015). 25 years at knowledge-based systems: A bibliometric analysis. Knowledge-based systems, 80, 3–13, https://doi.org/10.1016/j.knosys.2014.12.035

Dhamija, P., & Bag, S. (2020). Role of artificial intelligence in operations environment: A review and bibliometric analysis. The TQM Journal, https://doi.org/10.1108/TQM-10-2019-0243

Dolgui, A., & Ivanov, D. (2021). Ripple effect and supply chain disruption management: New trends and research directions. International Journal of Production Research, 59(1), 102–109, https://doi.org/10.1080/00207543.2021.1840148

Fahimnia, B., Sarkis, J., & Davarzani, H. (2015). Green supply chain management: A review and bibliometric analysis. International Journal of Production Economics, 162, 101–114, https://doi.org/10.1016/j.ijpe.2015.01.003

Falagas, M. E., Pitsouni, E. I., Malietzis, G. A., & Pappas, G. (2008). Comparison of PubMed, Scopus, Web of Science, and Google Scholar: Strengths and weaknesses. The FASEB Journal, 22(2), 338–342, https://doi.org/10.1096/fj.07-9492LSF

Hashemi, H., Rajabi, R., & Brashear-Alejandro, T. G. (2022). COVID-19 research in management: An updated bibliometric analysis. Journal of Business Research, 149, 795–810. https://doi.org/10.1016/j.jbusres.2022.05.082

He, X., Wu, Y., Yu, D., & Merigó, J. M. (2017). Exploring the ordered weighted averaging operator knowledge domain: A bibliometric analysis. International Journal of Intelligent Systems, 32(11), 1151–1166, https://doi.org/10.1002/int.21894

Hirsch, J. E. (2005). An index to quantify an individual's scientific research output. Proceedings of the National academy of Sciences, 102(46), 16569–16572, https://doi.org/10.1073/pnas.0507655102

Hirsch, J. E. (2010). An index to quantify an individual's scientific research output that takes into account the effect of multiple coauthorship. Scientometrics, 85(3), 741–754, https://doi.org/10.1007/s11192-010-0193-9

Hosseini, S., & Ivanov, D. (2020). Bayesian networks for supply chain risk, resilience and ripple effect analysis: A literature review. Expert systems with applications, 161, 113649, https://doi.org/10.1016/j.eswa.2020.113649

Ivanov, D., & Dolgui, A. (2021). OR-methods for coping with the ripple effect in supply chains during COVID-19 pandemic: Managerial insights and research implications. International Journal of Production Economics, 232, 107921, https://doi.org/10.1016/j.ijpe.2020.107921

Ivanov, D. (2019). Disruption tails and revival policies: A simulation analysis of supply chain design and production-ordering systems in the recovery and post-disruption periods. Computers & Industrial Engineering, 127, 558–570, https://doi.org/10.1016/j.cie.2018.10.043

Ivanov, D. (2018). Revealing interfaces of supply chain resilience and sustainability: A simulation study. International Journal of Production Research, 56(10), 3507–3523. https://doi.org/10.1080/00207543.2017.1343507

Ivanov, D., Dolgui, A., & Sokolov, B. (2019). The impact of digital technology and Industry 4.0 on the ripple effect and supply chain risk analytics. International Journal of Production Research, 57(3), 829–846, https://doi.org/10.1080/00207543.2018.1488086

Ivanov, D., Dolgui, A., & Sokolov, B. (Red.). (2019). Handbook of ripple effects in the supply chain. Springer.

Jamalnia, A., Gong, Y., & Govindan, K. (2022). Sub-supplier's sustainability management in multi-tier supply chains: A systematic literature review on the contingency variables, and a conceptual framework. International Journal of Production Economics, 108671. https://doi.org/10.1016/j.ijpe.2022.108671

Ji, B., Zhao, Y., Vymazal, J., Mander, Ü., Lust, R., & Tang, C. (2021). Mapping the field of constructed wetland-microbial fuel cell: A review and bibliometric analysis. Chemosphere, 262, 128366, https://doi.org/10.1016/j.chemosphere.2020.128366

Koberg, E., & Longoni, A. (2019). A systematic review of sustainable supply chain management in global supply chains. Journal of Cleaner Production, 207, 1084–1098, https://doi.org/10.1016/j.jclepro.2018.10.033

Laengle, S., Merigó, J. M., Miranda, J., Słowiński, R., Bomze, I., Borgonovo, E., ..., & Teunter, R. (2017). Forty years of the European Journal of Operational Research: A bibliometric overview. European Journal of Operational Research, 262(3), 803–816, https://doi.org/10.1016/j.ejor.2017.04.027

Li, Y., Chen, K., Collignon, S., & Ivanov, D. (2021). Ripple effect in the supply chain network: Forward and backward disruption propagation, network health and firm vulnerability. European Journal of Operational Research, 291(3), 1117–1131, https://doi.org/10.1016/j.ejor.2020.09.053

Li, Y., & Zobel, C. W. (2020). Exploring supply chain network resilience in the presence of the ripple effect. International Journal of Production Economics, 228, 107693. https://doi.org/10.1016/j.ijpe.2020.107693

Majiwala, H., & Kant, R. (2022). A bibliometric review of a decade'research on industry 4.0 & supply chain management. Materials Today: Proceedings. https://doi.org/10.1016/j.matpr.2022.09.058

Malacina, I., & Teplov, R. (2022). Supply chain innovation research: A bibliometric network analysis and literature review. International Journal of Production Economics, 108540, https://doi.org/10.1016/j.ijpe.2022.108540

Martins, C. L., & Pato, M. V. (2019). Supply chain sustainability: A tertiary literature review. Journal of Cleaner Production, 225, 995–1016, https://doi.org/10.1016/j.jclepro.2019.03.250

Mingers, J., & Leydesdorff, L. (2015). A review of theory and practice in scientometrics. European Journal of Operational Research, 246(1), 1–19, https://doi.org/10.48550/arXiv.1501.05462

Mishra, D., Dwivedi, Y. K., Rana, N. P., & Hassini, E. (2021). Evolution of supply chain ripple effect: A bibliometric and metaanalytic view of the constructs. International Journal of Production Research, 59(1), 129–147, https://doi.org/10.1080/00207543.2019.1668073

Monostori, J. (2021). Mitigation of the ripple effect in supply chains: Balancing the aspects of robustness, complexity and efficiency. CIRP Journal of Manufacturing Science and Technology, 32, 370–381, https://doi.org/10.1016/j.cirpj.2021.01.013

Montecchi, M., Plangger, K., & West, D. C. (2021). Supply chain transparency: A bibliometric review and research agenda. International Journal of Production Economics, 238, 108152, https://doi.org/10.1016/j.cirpj.2021.01.013

Nimmy, S. F., Hussain, O. K., Chakrabortty, R. K., Hussain, F. K., & Saberi, M. (2022). Explainability in supply chain operational risk management: A systematic literature review. Knowledge-Based Systems, 235, 107587, https://doi.org/10.1016/J.KNOSYS.2021.107587

Perdana, T., Onggo, B. S., Sadeli, A. H., Chaerani, D., Achmad, A. L. H., Hermiatin, F. R., & Gong, Y. (2022). Food supply chain management in disaster events: A systematic literature review. International Journal of Disaster Risk Reduction, 103183, https://doi.org/10.1016/j.ijdrr.2022.103183.

Rinaldi, M., Murino, T., Gebennini, E., Morea, D., & Bottani, E. (2022). A literature review on quantitative models for supply chain risk management: Can they be applied to pandemic disruptions? Computers & Industrial Engineering, 108329, https://doi.org/10.1016/j.cie.2022.108329

Scheibe, K. P., & Blackhurst, J. (2018). Supply chain disruption propagation: A systemic risk and normal accident theory perspective. International Journal of Production Research, 56(1–2), 43–59, https://doi.org/10.1080/00207543.2017.1355123.

Seuring, S., & Gold, S. (2012). Conducting content-analysis based literature reviews in supply chain management. Supply Chain Management: An International Journal, 17(5), https://doi.org/10.1108/13598541211258609

Seuring, S., & Müller, M. (2008). From a literature review to a conceptual framework for sustainable supply chain management. Journal of Cleaner Production, 16(15), 1699–1710, https://doi.org/10.1016/j.jclepro.2008.04.020

Simonetto, M., Sgarbossa, F., Battini, D., & Govindan, K. (2022). Closed loop supply chains 4.0: From risks to benefits through advanced technologies. A literature review and research agenda. International Journal of Production Economics, 108582, https://doi.org/10.1016/j.ijpe.2022.108582

Valenzuela, L. M., Merigó, J. M., Johnston, W. J., Nicolas, C., & Jaramillo, J. F. (2017). Thirty years of the Journal of Business & Industrial Marketing: A bibliometric analysis. Journal of Business & Industrial Marketing, https://doi.org/10.1108/JBIM-04-2016-0079

Wang, X., Tang, T., Su, S., Yin, J., Gao, Z., & Lv, N. (2021). An integrated energy-efficient train operation approach based on the space-time-speed network methodology. Transportation Research. Part E: Logistics and Transportation Review, 150, 102323., https://doi.org/10.1016/j.tre.2021.102323

Wang, X., Xu, Z., Su, S. F., & Zhou, W. (2021). A comprehensive bibliometric analysis of uncertain group decision making from 1980 to 2019. Information Sciences, 547, 328–353, https://doi.org/10.1016/j.ins.2020.08.036

Yilmaz, Ö. F., Özçelik, G., & Yeni, F. B. (2021). Ensuring sustainability in the reverse supply chain in case of the ripple effect: A two-stage stochastic optimization model. Journal of Cleaner Production, 282, 124548, https://doi.org/10.1016/j.jclepro.2020.124548

Yu, D., Xu, Z., & Šaparauskas, J. (2019). The evolution of „Technological and Economic Development of Economy”: A bibliometric analysis. Technological and Economic Development of Economy, 25(3), 369–385, https://doi.org/10.3846/tede.2019.10193

Zhang L., Ling J., Lin M. (2022). Artificial intelligence in renewable energy: A comprehensive bibliometric analysis. Energy Reports, 8, 14072–14088. https://doi.org/10.1016/j.egyr.2022.10.347

Zhang, K., & Liang, Q. M. (2020). Recent progress of cooperation on climate mitigation: A bibliometric analysis. Journal of Cleaner Production, 277, 123495, https://doi.org/10.1016/j.jclepro.2020.123495

Cena artykułu
16.00
Cena numeru czasopisma
66.96
Prenumerata
480.00 zł
384.00
Najniższa cena z 30 dni: 384.00
zamów prenumeratę