Najlepsze ceny Specjalne oferty dla członków klubu książki PWE Najtańsza dostawa
DOI: 10.33226/1231-2037.2021.5.1
JEL: M29

Operator maszyn i urządzeń w Przemyśle 4.0 — wprowadzenie do tematu

W artykule przedstawiono obraz operatora maszyn i urządzeń w kontekście rozwoju przemysłowych systemów cyberfizycznych i adaptacyjnej automatyzacji w przedsiębiorstwach produkcyjnych. Rozwój technologii sprawia, że pojawiają się nowe wyzwania wobec operatorów maszyn i urządzeń. Lansowana od dekady koncepcja Przemysłu 4.0 kształtuje nowe środowisko pracy operatorów obsługujących maszyny i urządzenia. Przemysł 4.0 jest pojęciem używanym do opisu technologii w czwartej rewolucji przemysłowej. Zastosowanie do sterowania produkcją nowoczesnych technologii informatycznych i komunikacyjnych, wspartych pełną automatyzacją i robotyzacją czynności, Internetem Rzeczy i przetwarzaniem danych w chmurze, zmienia dotychczasowe sposoby obsługi maszyn i urządzeń. W literaturze przedmiotu toczą się dyskusje wokół roli operatorów maszyn i urządzeń w nowoczesnych fabrykach. Wtórne źródła informacji były podstawą do nakreślenia ogólnych (ramowych) warunków pracy i cech operatora maszyn i urządzeń w Przemyśle 4.0. Celem niniejszego artykułu jest wprowadzenie do szerokiej tematyki zagadnień o roli operatorów maszyn i urządzeń w cyberfizycznych systemach produkcji.

Pobierz artykul
Słowa kluczowe: Przemysł 4.0; operator maszyn i urządzeń; cyberfizyczne systemy produkcji

Bibliografia

Bibliografia/References

Bick, W. (2014). Warum Industrie 4.0 und Lean zwingend zusammengehören. Man kann auch schlechte Prozesse digitalisieren. VDI-Z Integrierte Produktion, (11), 46–47.

Broy, M. (2010). Cyber-Physical Systems (17–32). Berlin: Springer.

Frankowska, M. (2018). Technologie Smart Industry a rozwój zarządzania łańcuchami dostaw. Gospodarka Materiałowa i Logistyka, (6), 2–12.

Gajdzik, B. (2019). Predyktywne i inteligentne utrzymanie urządzeń w Przemyśle 4.0 — maszyny wzmocnione o dane. Historia zmian w UR na przykładzie krajowego sektora stalowego. Gospodarka Materiałowa i Logistyka, (8), 10–17. https://doi.org/10.33226/1231-2037.2019.8.2

Hancock, P. A., Jagacinski, R. J., Parasuraman, R., i in. (2013). Human-automation interaction research: past present and future. Ergonomics in Design: The Quarterly of Human Factors Applications, 21(2), 9–14. https://doi.org/10.1177/1064804613477099

Kagermann, H., Lukas, W-D., Wahlster, W. (2011). Industrie 4.0: Mit dem Internet der Dinge auf dem Weg zur 4. industriellen Revolution, VDI Nachrichten, (13), http://www.wolfgang-wahlster.de/wordpress/wp-content/uploads/Industrie_4_0_Mit_dem_Internet_der_Dinge_auf_dem_Weg_zur_vierten_industriellen_Revolution_2.pdf (2.02.2020).

Kagermann, H., Wahlster, W., Helbig, J. (2013). Recommendations for Implementing the Strategic Initiative Industry 4.0: Final Report of the Industrie 4.0 Working Group; Forschungsunion, Acatech-National Academy of Science and Engineering, München, https://en.acatech.de/publication/recommendations-for-implementing-the-strategic-initiative-industrie-4-0-final-report-of-the-industrie-4-0-working-group/ (2.02.2020).

Kagermann, H. (2015). Change Through Digitization — Value Creation in the Age of Industry 4.0. In: H. Albach, H. Meffert, A. Pinkwart, R. Reichwald, (eds.), Management of Permanent Change. Wiesbaden: Springer Fachmedien. https://doi.org/10.1007/978-3-658-05014-6

Lee, E. A. (2008). Cyber Physical Systems: Design Challenges. 11th IEEE Symposium on Object Oriented Real-Time Distributed Computing (ISORC), 363–369. https://doi.org/10.1109/isorc.2008.25

Lee, E. A., Seshia S. A. (2017). Introduction to embedded systems. A cyber-physical systems approach, 2-nd Ed., MIT Press.

Lee, J. D., Seppelt, B. D. (2012). Human factors and ergonomics in automation design. In: G. Salvendy (ed.), Handbook of human factors and ergonomics (1615–1642). Hoboken: Wiley. https://doi.org/10.1002/9781118131350.ch59

Lee, J., Bagheri, B., Kao, H. (2015). Research Letters: A Cyber-Physical Systems architecture for Industry 4.0-based manufacturing systems. Manufacturing Letters, 3, 18–23. https://doi.org/10.1016/j.mfglet.2014.12.001

Lee, J., Kao, H. -A., Yang, S. (2014). Service innovation and smart analytics for Industry 4.0 and big data environment. Procedia CIRP, (16), 3–8. https://doi.org/10.1016/j.procir.2014.02.001

Liu, Y., Peng, Y., Wang, B, Yao, S., Liu, Z. (2017). Review on cyber-physical systems. Journal of Automatica Sinica, 4(1), 27–40.

Lorenz, M., Rüfimann, M., Strack, R., Luetk, K. L., Bolle, M. (2015). Man and Machine in Industry 4.0. How Will Technology Transform the Industrial Workforce Through 2025? The Boston Consulting Group (BCG).

Lu, Y. (2017). Cyber-physical system (CPS) — based Industry 4.0: A survey. Journal of Industrial Integration and Management, 2(3). https://doi.org/10.1142/S2424862217500142

Olszewski, M. (2006). Podstawy mechatroniki. Warszawa: Wydawnictwo REA.

Paprocki, W. (2016). Koncepcja Przemysł 4.0 i jej zastosowanie w warunkach gospodarki cyfrowej. W: J. Gajewski, W. Paprocki, J. Pieriegud (red.), Cyfryzacja gospodarki i społeczeństwa — szanse i wyzwania dla sektorów infrastrukturalnych. Gdańsk: Publikacja Europejskiego

Kongresu Finansowego. Instytut Badań nad Gospodarką Rynkową — Gdańska Akademia Bankowa. http://www.efcongress.com/sites/default/files/publikacja_ekf_2016_cyfryzacja_gospodarki_i_spoeczestwa.pdf, (17.02.2018).

Patel, M. (2018). The Future of Maintenance. White paper. Bengaluru: Infosys. https://www.infosys.com/industries/aerospace-defense/white-papers/Documents/enabled-predictive-maintenance.pdf (16.07.2019).

Pereira, A. C., Romero F. (2017). A review of the meanings and the implications of the Industry 4.0 concept. Manufacturing Engineering

Society International Conference 2017, 28–30 June 2017, Vigo (Pontevedra). Procedia Manufacturing, (13), 1206–1214; https://www.researchgate.net/publication/320341295_A_review_of_the_meanings_and_the_implications_of_the_Industry_40_concept (9.09.2020). https://doi.org/10.1016/j.promfg.2017.09.032

Płaczek, E. (2018). Logistyka w erze Industry 4.0. Przedsiębiorczość i Zarządzanie, 19(11/3), 55–66.

Poreda, R. (2020). Jak odpowiedzieć na wyzwania przemysłu 4.0 w języku maszyn?, https://www.astor.com.pl/biznes-i-produkcja/packml-jakodpowiedziec-na-wyzwania-przemyslu-4-0-w-jezyku-maszyn/ (20.02.2021).

Romero, D., Bernus P., Noran O., Stahre J., Fast-Berglund, A. (2016). The Operator 4.0: Human Cyber-Physical Systems & Adaptive Automation Towards Human-Automation Symbiosis Work Systems. W: Advances in Production Management Systems: Initiatives for a Sustainable World. IFIP International Conference on Advances in Production Management Systems — APMS, 677–686. https://link.springer.com/chapter/10.1007/978-3-319-51133-7_80 (20.02.2021). https://doi.org/10.1007/978-3-319-51133-7_80

Romero, D., Noran, O., Stahre, J., Bernus, P., Fast-Berglund, A. (2015). Towards a human-centred reference architecture for next generation balanced automation systems: human-automation symbiosis. W: Advances in Production Management Systems: Initiatives for a Sustainable World. IFIP International Conference on Advances in Production Management Systems — APMS, 556–566, https://link.springer.com/chapter/10.1007/978-3-319-22759-7_64 (20.02.2021). https://doi.org/10.1007/978-3-319-22759-7_64

Romero, D., Stahre, J., Wuest, T., Noran, O., Bernus, P., Fast-Berglund, A., Gorecky, D. (2016). Towards an Operator 4.0 Typology: A Human--Centric Perspective on the Fourth Industrial Revolution Technologies. International Conference on Computers and Industrial Engineering (CIE46), Tianjin, China, 29–30.11.2016, 1–11.

Ruppert, T., Jaskó, Sz., Holczinger, T., Abonyi, J. (2018). Enabling Technologies for Operator 4.0: A Survey. Apply Science, 8, 1650; https://www. mdpi. com/2076-3417/8/9/1650 (20.02.2021). https://doi.org/10.3390/app8091650

Rüßmann M., Lorenz M., Gerbert P., Waldner M., Justus J., Engel P., Harnisch M. (2015). Industry 4.0. The Future of Productivity and Growth in Manufacturing Industries, Boston Consulting Group (BCG).

Santos, C., Mehrsai, A., Barros, A. C., Araújo, M., Ares, E. (2017). Towards Industry 4.0: An overview of European strategic roadmaps. Paper prepared for the Manufacturing Engineering Society International Conference, 28–30 June 2017, Vigo (Pontevedra). https://doi.org/10.1016/j.promfg.2017.09.093

Schuh, G., Potente, T., Wesch-Potente, C., Hauptvogel, A. (2013). Sustainable Increase of Overhead Productivity due to Cyber-Physical Systems. Proceedings of the 11th Global Conference on Sustainable Manufacturing (GCSM) — Innovative Solutions, Universitätsverlag der TU Berlin.

Sheridan, T., Parasuraman, R. (2006). Human-automation interaction. Proceedings of the Human Factors and Ergonomics Society (Hum. Factors Ergon.) 1(1), 890129.

Stadnicka, D., Antonelli, D. (2016). Discussion on lean approach implementation in a collaborative man-robot workstation. Sixth International Conference on Business Sustainability „Management, Technology and Learning for Individuals, Organisations and Society in Turbulent Environment”, 16–18.11.2016.

Stone, H., Bleibaum, R., Thomas, H. A. (2012). Sensory Evaluation Practices. 4th ed. Amsterdam: Elsevier.

Spath, D., Ganschar, O., Hämmerle, M., Krause, T., Schlund, S. (2013). Produktionsarbeit der Zukunft — Industrie 4.0. Stuttgart: Studie.

Wagner, T., Herrmann, Ch., Thiede, S. (2017). Industry 4.0 impacts on lean production systems. Elsevier, 50-th CIRP Conference of manufacturing Systems. Procedia CIRP, 63, https://doi.org/10.1016/j.procir. 2017.02.041

Cena artykułu
16.00
Cena numeru czasopisma
62.00
Prenumerata
480.00 zł
384.00
Najniższa cena z 30 dni: 384.00
zamów prenumeratę